MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		Mark Scheme: Teachers' version					Syllabus	Paper	r
			GCE AS/	A LEVEL –	May/June 2	2012	9701	23	
1 (a) (i)	from nucle elect nucle	from Na to C1 nuclear charge increases electrons are in the same shell/have the same shielding nuclear attraction increases						(1) (1) (1)	
(ii) (b) (i)	argo argo	n does n exist	s not form a s as single	ny bonds/co atoms/is mo	ompounds c onatomic	or		(1)	[4]
		radiu	us of cation	/nm	rad	ius of anion	/nm		
	N	a⁺	Mg ²⁺	A1 ³⁺	P ^{3–}	S ²⁻	Cl ⁻		
	0.0)95	0.065	0.050	0.212	0.184	0.181		
								(1)	
(ii)	catic catic nucle	ons con ons con eus ha	ntain fewer e ntain fewer e s a greater	electrons th electrons th attraction	an the corre an they do r	esponding a protons	toms or	(1) (1)	
(iii)	anio anio nucle	ns con ns con eus ha	tain more e tain more e s a smaller	lectrons tha lectrons tha attraction	in the corres in they do p	sponding at rotons	oms or	(1) (1)	[5]
(c) (i)	Na₂0 SO₂	D + H ₂ 0 + H ₂ O	$\begin{array}{ccc} \mathcal{O} & ightarrow & 2 \mathrm{NaC} \ ightarrow & \mathrm{H_2SO_3} \end{array}$	ЭН				(1) (1)	
(ii)	for N for S	la ₂ O 6O ₂	10 to 7 1 to 4	14				(1) (1)	
(iii)	NaO 2Na	H + H ₂ OH + F	$2 \text{SO}_3 \rightarrow \text{Nat}$ $1_2 \text{SO}_3 \rightarrow \text{Nat}$	$aHSO_3 + H_2$ $a_2SO_3 + 2H_2$	O or H₂O			(1)	[5]
								[Total	: 14]

	Page 3	Mark Scheme: Teachers' version	Syllabus	Paper	
		GCE AS/A LEVEL – May/June 2012	9701	23	
2	(a) (i) Na ₂ ($CO_3 + 2HCl \rightarrow 2NaCl + H_2O + CO_2$		(1)	
	(ii) n(H0	$Cl) = \frac{35.8}{1000} \times 0.100 = 3.58 \times 10^{-3}$		(1)	
	(iii) <i>n</i> (Na	a_2CO_3) = $\frac{35.8}{2} \times 10^{-3}$ = 1.79 × 10 ⁻³ mol in 25.0 cm ³		(1)	
	(iv) <i>n</i> (Na	a_2CO_3) = 1.79 × 10 ⁻³ × 10 = 1.79 × 10 ⁻² mol in 250 c	m ³	(1)	
	(v) mas M₁ o mas	as of Na ₂ CO ₃ = 1.79 × 10 ⁻² × 106 = 1.90g of Na ₂ CO ₃ = 106 as of Na ₂ CO ₃ = 1.90 g		(1) (1)	[6]
	(b) <i>n</i> (H ₂ O) in	n 5.13 g of washing soda = $\frac{5.13 - 1.90}{18}$ = 1.79 × 10 ⁻¹	mol	(1)	
	<i>n</i> (Na ₂ CC <i>n</i> (H ₂ O) :	D ₃) in 5.13 g of washing soda = 1.79 × 10 ⁻² mol n(Na₂CO₃) = 10:1		(1)	
	or 1.90 g N	a_2CO_3 are combined with 3.23.g H_2O_3			
	106 g Na	$a_2 CO_3$ are combined with $\frac{3.23 \times 106}{1.00}$ = 180.2 g H ₂		(1)	
	this is 10) mol of H_2O		(1)	
	or 1.79 × 1	0^{-2} mol Na ₂ CO ₃ .xH ₂ O = 5.13 g of washing soda			
	1 mol Na	$a_2 CO_3 xH_2 O \equiv \frac{5.13}{1.70 x10^{-2}} = 286.6 g$		(1)	
	Na ₂ CO ₃	= 106 and H_2O = 18 hence x = 10		(1)	[2]
				[Tota	l: 8]

	Page 4		L I	Mark Sc	heme: Teachers' version		Syllabus	Paper	•
GCE AS/A LEVEL – May/.			LEVEL – May/June 2012		9701	23			
3	(a)	CH the one is c bur	3OCH entha mole omple ned ir	$g_3(l) + 3O_2(g) \rightarrow 2$ alpy change/heat c of CH ₃ OCH ₃ /a co etely burned or of an excess of air/o	CO ₂ (g) + 3H ₂ O(l) hange/heat evolved when mpound oxygen			(1) (1) (1)	[3]
	(b)	ΔH^{e} ΔH^{e}	^e _f /kJ r ^{ereaction} rect si	2CH ₃ OH(I) nol ⁻¹ 2(–239) = –184 + (–2 = +8 kJ mol ⁻¹ ign	\rightarrow CH ₃ OCH ₃ (g) -184 286) - 2(-239)	+	H ₂ O(I) -286	(1) (1) (1)	[3]
	(c)	(i) 	н-	н н 	н н н с с о о н н н ethanol				
		l	both	correct		1		(1)	
			both	Conect				(1)	
		(ii)	struc	tural isomerism o	functional group isomerism	ו		(1)	[2]
	(d)	(i)	hydr	ogen bonds				(1)	
		(ii)	lone	pair on O atom of	C₂H₅OH			(1)	
			corre	ect dipole O ^{δ–} —H ^{δ+}	on bond in one molecule o	f ethanol		(1)	
			hydr i.e.	ogen bond shown	between lone pair of an O a	atom and	l a hydrogen atom,		
			C ₂ ł	H₅ • H O O H					
			• H	• п— U — C ₂ H ₅				(1)	[4]
								[Total	: 121

compound C

(1)

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9701	23

(e)

CH₃	Н	CH	₃ CH	3
— C —	- C —	– C –	– C—	_
Ĥ	CH	₃ H	Н	

allow any orientation of CH ₃ – groups	(1)	[1]
	• •	

- (f) (i) $CH_2=CH_CH=CH_2$ allow $CH_3CHOHCH=CH_2$ and $CH_3C=CCH_3$ (1) (ii) $CH_2BrCHBrCHBrCH_2Br$
 - allow $CH_3CBr_2CBr_2CH_3$ from $CH_3CHOHCH=CH_2$ allow $CH_3CHOHCHBrCH_2Br$ from $CH_3C=CCH_3$ (1)
 - (iii) electrophilic addition both words required (1) [3]

[Total: 14]

Page 7		e 7 Mark Scheme: Teachers' version		Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2012	9701	23	
(a) ((i)		/carbon dioxide		(1)	
(i	ii)	carb	oxylic acid or –CO ₂ H or –COOH		(1)	[2]
(b) ((i)	dehy	dration or elimination		(1)	
(i	ii)	H co H co H is	ntains >C=C< bond ntains $-CO_2H$ group $CH_2=CHCO_2H$		(1) (1) (1)	[4]
(c) n	ז(F)	= -	$\frac{0.600}{90}$ = 6.67 × 10 ⁻³ mol		(1)	
F h n	= co neno າ(H ₂ vol	ontair ce or 2) = of Ha	is one –OH group and one –CO ₂ H group ne mole of F produces one mole of H ₂ with Na 6.67×10^{-3} mol $h_2 = 6.67 \times 10^{-3} \times 24000$ cm ³		(1) (1)	
=	= 16	50 cm	³ at room temperature and pressure		(1)	[4]
	Pag (a) ((b) ((i) (c) / 	Page 7 (a) (i) (ii) (b) (i) (ii) (b) (i) (iii) (c) n(F) F condense hence n(H2 vol. = 16	Page 7 (a) (i) CO_{24} (ii) carb (b) (i) dehy (ii) H co (ii) H co H is (c) $n(F) = -F$ F contain hence or $n(H_2) =$ vol. of H_2 = 160 cm	Page 7Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2012(a) (i) CO_2 /carbon dioxide (ii) carboxylic acid or $-CO_2H$ or $-COOH$ (b) (i) dehydration or elimination (ii) H contains >C=C< bond H contains $-CO_2H$ group H is CH_2 =CHCO2H(c) $n(F) = \frac{0.600}{90} = 6.67 \times 10^{-3}$ mol F contains one $-OH$ group and one $-CO_2H$ group hence one mole of F produces one mole of H2 with Na $n(H_2) = 6.67 \times 10^{-3}$ mol vol. of H2 = 6.67 $\times 10^{-3} \times 24000$ cm ³ = 160 cm ³ at room temperature and pressure	Page 7Mark Scheme: Teachers' versionSyllabusGCE AS/A LEVEL – May/June 20129701(a) (i) CO_2 /carbon dioxide(ii) carboxylic acid or $-CO_2H$ or $-COOH$ (b) (i) dehydration or elimination(ii) H contains >C=C< bond H contains $-CO_2H$ group H is $CH_2=CHCO_2H$ (c) $n(F) = \frac{0.600}{90} = 6.67 \times 10^{-3}$ molF contains one $-OH$ group and one $-CO_2H$ group hence one mole of F produces one mole of H_2 with Na $n(H_2) = 6.67 \times 10^{-3}$ mol vol. of $H_2 = 6.67 \times 10^{-3}$ arou rout compared on the state of the state	Page 7Mark Scheme: Teachers' versionSyllabusPaperGCE AS/A LEVEL - May/June 2012970123(a) (i) CO_2 /carbon dioxide(1)(ii) carboxylic acid or $-CO_2H$ or $-COOH$ (1)(b) (i) dehydration or elimination(1)(ii) H contains >C=C< bond

(d) (i)

HOCH ₂ CH ₂ CO ₂ H	CH ₃ CH(OH)CO ₂ H	
J	к	

one isomer correct

(ii)

HO ₂ CCH ₂ CO ₂ H	CH ₃ COCO ₂ H
product from J	product from K

one oxidation product correct

(1) [2]

(1)

[Total: 12]

https://xtremepape.rs/